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ABSTRACT

This paper deals with the evaluation of the response
of marine structures in short-crested sea states when
the load spatial~-correlation is an important factor. A
commonly method of approach is using the frequency
domain solutions of stochastic dynamics, by
implementing the statistical properties of the loading
in the cross spectral matrices. A simpler approach
which can be used for time or frequency domain analysis
is presented in this paper. A set of nodal forces is
simulated, via a Monte Carlo simulation, fullfilling
the statistical properties and the spatial-correlation
of the applied loading, and the dynamic response is
evaluated like a deterministic analysis. The solution
is repeated for a number of different simulated nodal
force sets, and the expected response values are
obtained by computing ensemble statistics. The proposed
method can be easily implemented in dynamic analysis
finite element programs without significant needs of
computation time and computer memory.

INTRODUCTION

In the case of marine structures in a short-crested
wave field there exist mostly statistical information,
like spectral densities and correlation functions,
about the loading. The time histories of the loading
cannot be predicted for each point of the structure.
For the correct evaluation of the dynamic response,
using a finite element model of the structure, one
needs realistic nodal forces.

The usual method in stochastic dynamics (1) for
calculating the response is frequency domaln analysis,
in which the frequency response function 1a evaluated

for a number of unit harmonic waves at various
frequencies and directions, and where the eross
spectral load matrix ia constructed from the

directional wave spectrum and the hydrodynamic force
functions.

In this paper a different approach is presented. The
sea state is not decomposed in directional components,
but it 1s represented by the wave coherence in various
direotions, and the hydrodynamic force functions are
modified to include the directional effects. From the
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short crested sea state, using a Monte Carlo
simulation, nodal loads are simulated, and are used 1in
the finite element model for a deterministic dynamic
analysis. The expected response values are obtained
from ensemble statistics between the calculated
response values in a number of simulated nodal 1load
sets.

The proposed in this paper method can be used for time
or frequency domain analysis. In the time domain
analysis, constant values are assumed for the

hydrodynamic force functions and the wave coherence,
which 1s a falr approximation for narrow-banded wave
loading.

The computer implementation of the proposed method
is easy for any dynamic analysis finite element
program, for frequency or time domaln analysis, without
significant needs in computation time and computer
memory. Examples of wusing the method in the case of
steel jacket and gravity offshore platforms and long
floating structures are shown. Numerical results and
comparison with field measurments are shown for a
floating bridge under short-crested wave loading.

MATHEMATICAL STATEMENT OF THE PROBLEM

In a finite
response is

M'a-q» c.& +Kd=Q |

element formulation the structural

(1)

where: d is the vector of time dependent nodal
displacements; M,, C, and K are mass, damping and
stiffness matrices of the structure-scil system; Q 1is

the vector of time dependent hydrodynamic forces,

Depending on the size of the structural element the
hydrodynamic forces are computed using Morison's
equation or wave diffraction theory (2,3). Assuming
linearizartion in the drag forces, and grouping terms
depending on the structure motion on the left side and
terms depending on the wave characteristics on the
right side, Eq.(1) becomes

(Mg+ Myt Cm)d + (Co+ Ch+ Cg)d + Kd=F + Fg+ Fy , (2)

where: M, and C are the matrices of hydrodynamic mass



and damping due to waves generated by the structure
obtained from potential theory; Cm and C4 are the
inertia and drag contributions obtained from the
linearized Morison's equation; F, and Fd are inertia
and drag forces obtained from Morison's equation and
depend on the water particle acceleration and velocity;
Fn is the vector of hydrodynamic forces on an immovable
structure obtained from potential theory.

This paper shows a method to simulate the right hand
vectors of EQ.(2) from the characteristics of the
short-crested wave field. 4 time or frequency domain
solution of Eq.(2) can be performed afterwards. The
stochastie characteristies of the sea state are
introduced by obtaining a set of solutions for
different simulated cases and getting the ensemble
statisties of the results.

Throughout this paper linear wave theory is assumed,
also linearized Morison's equation and linear
transformation from wave amplitude to wave forces. For
the time domain analysis a narrow banded wave loading
process is assumed so the hydrodynamic force
coefficients and wave coherence are constant values.
For simplicity most of the equations will be obtained
by a time domain analysis, thus the hydrodynamic force
functions and wave coherence will appear to be
frequency independent. The frequency dependence of the
final equations for the frequency domain analysis will
be reintroduced, and the narrow-banded wave loading
assumption is not necessary in the frequency domain
analysis.

SHORT~CRESTED WAVE LOADING

Consider a coordinate system as the one shown in
Fig.(1), where r(x,y,z) is used for the position vector
of a point, and u(x,y) for the position of its
projection on the free surface.

-~ free surface

structure --

FIG. 1

GEOMETRICAL DEFINITIONS

We assume that the short-crested wave field is

described by the directional wave spectrum (4)

sw(w,ﬂ) = Sw(w) v (3)

where S (w) 1s the unidirectional spectrum (models like

Pierson-Moskwitz,JONSWAP); and W( @) 1is a spreading

function giving the directional distribution of the

wave energy (5,6,7) (models like W(6)=Ccos™6«6s), ¥(8)
=Ccoszn(Q%§Q), 6, 1s the mean wave direction).
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For the directional wave spectrum the wave coherence
¥(ui,uy,w) between two points on the sea surface can be
obtained (8). As the statistical properties of the wave
fi2ld do not vary from point to point, the wave
coherence depends on the vector separation (AU= U=
u;) between the two points

T 5+ 6y

- J{u‘r 2+og’(O)cos(2n(%)cos@+2n(%z)sin0)d9]z

2+

2

+ [:l;2+0‘01’(0)sin(2n(%)cos@+2ﬂ(é})sin9)d€] } "(4)
where A is the wave length (for deep waters A=272/0? ),
and 8, is the mean wave direction. In ref.(9) graphs
are presented for the above coherence of various
directional spectral models. The wave coherence is a
decaying function as the separation of the two points
increases and can be approximated reasonably by an
exponentialy decaying function (9,10,11,12). Tables for
the coefficients of such exponential approximation are
presented in refs.(8) and (12).

The surface waves create a time varying distributed
load on the surface of the structure. For a surface
element dS this load is

X

P, (x,y,2,t)
P(r,e)ds= | p) (x,y,z,t) |ds

P (x,y,2,t)

(5)

Depending on the size of the structural element two
different approaches are used to compute the wave
loading (2,13,14), Morison's equation and diffraction
theory.

For slender members Morison's equation gives

p(r,t)ds= Cjv+ CqV Ivi , (6)
where v and v is the normal water particle velocity
and acceleration. Using linearized form of Eq.(6) we
have

p(r,t)ds= Cv+ Wn)crvv (7)

For large members the diffraction theory gives

p(r,t)dsS= C; M(u,t) &
where €y is the frequency depended hydrodynamic
coefficient,and 7( u,t) is the wave amplitude.

For harmonic wave loading of frequency w and
direction 6, , v and v in Eq.(7) are related linearly

to the wave amplitude and both EqQ.(7) and (8) can be
expressed in the form
5X(I’,m,0)
p(r,t)= 6Z(r,w,0) nu,t) , (9)
8 (ryw,8)

where 6(r,w,0) are the hydrodynamic force coefficients.

In this work the effect of the short-crested wave
field is considered directly in the response
calculations, without assuming a superposition of
directional components. In this case the hydrodynamic
coefficients of Eq.(9) should be modified to represent
the directional spread of the wave energy. This can be
done (12,15) if we use the spectral form of Eq.(9), and

define the hydrodynamic force coefficlents in the
directional wave field as
(10)

StV g
5Crwn00)=\f, o 8% (r,0,0w6)d0



The wave force on an element dS is

p(r,t)ds= M(u,t) H(r,w,80) d5 (11)

where H(r,w,8;) is the hydrodynamic transfer function
yw,80)

(r
(r,w,80)
( ',w,@o)

SX
H(r,w, 65)= Zsy (12)

The mean wave direction 4is considered constant
through all the analysis so the parameter % is taken
out of the expression of the hydrodynamic transfer
function. The hydrodynamic transfer function is
frequency dependent, but in the following discussion
because some equations will appear in time domain and
some in frequency domain the hydrodynamic transfer
function will be written as H(r) , and will be assumed
constant 1in the time domain analysis and frequency

dependent in the frequency domain analysis. The
constant values of the hydrodynamic and coherence
functions in the time domain analysis is a fair
aproximation for the case of narrow-banded wave
loading.

The load correlation between two points rl(x1 A .zl)
and 1, (x,+¥,+2 ») of the structure surface is computed
using Eq.(11) as

XX XY _XZ

Rgx ng Rg'z lim }
Rp(fl,fz,‘!)= LEAM SO A
RZX RZy R

1 T

fp(rl,t) p(r,,t+17)dt
z 0
P P p

z

= H(rl)HT(rz) R,I(Ul,uz,‘f) s (13)

where Rq(ul Uz, T) 1Is the wave correlation between the

projections U1 and u2 of the two points on the sea
surface.
The load cross spectral matrix is obtained as the
Fourier transform of the load correlation
-1 -iwT
Sp(l'l,fz,w)= 7w j_: Rp("l,fzy‘f) e dr

= H(r) H(r) Spluy,uz,e) (1)

where Sp(u1 Uz, w) is the wave cross spectral matrix
between the points u1 and u2 on the surface.
Introducing the wave coherence in Eq.(14), we obtain

for the amplitude of the load cross spectral matrix

T
s, (r1, 2,0 = HOR) H(E) p(du, 008 @) (15)

FINITE ELEMENT MODEL

In a finite element model of the structure, with
displacement formulation (16), the displacements inside
an element (4, J,k,...) (Fig.2), are expressed as

X e
q,(r) (e
_ € af il _ N4t
A= (ol (nf = [NEN, - gt - N d® (16)
Q)] :
where N= N*i’l H Ni are the element shape functions;
1is a

(3%3) identity matrix taking care of the three
coordinate directions x,¥,z; and d;=1di ,d! ,di]7 are
the nodal displacements of node i. The superscript e
designates that the corresponding matrices containing

all the submatrices for a particular element e.
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FIG.2 FINITE ELEMENT MODEL

After a variational formulation of the finite
element equations, the nodal loads are expressed as

_ SO0
F(t) = {F ()} = SNp(r,t)ds , 17
where the integration is over the boundary surface of
the structure, and
F} (t)
> 8
ﬂ(t) F%(t) (18)
FS(0)
1

represents the nodal load on node i.
Using Eq.(16) and (17) the nodal loads are expressed
as

) = 2 [ stiecods (19)
i e S, i

where the summation is extended over all elements
adjacent to node 1, and the integration is over the
boundary surface of each of these elements.

NODAL LOAD CORRELATION

Using Eq.(13) and (19) we obtain for the nodal load
correlation

R _(T) =

Fi Fj " €5 €j

where ; and ; are summations over elements adjacent
to nodes”i and j3 and et fe. are distances to points
on the boundary surface of thése elements over which
the integrations are extendent.

! From Eq.(20) the nodal load cross-spectral matrix is
obtained

20)

Rp( Gy rej , r)dSeidSej s

(21)
NEiN¢i S (r..,ra.,u)dS,.dS
iy Sphfeprley e;%e

]

L L

J Tei TFj



Using EQ.(15) and (21) the nodal load cross-specrtal
amplitude matrix takes the form

N = P, w , (22)
Isﬁ rj(u)l Py Sy
where
w)= 23
plj() (23)

B SINSIHC rOHL 1) (AU, @) dS, , dS, ; -
% %L%J;ej NENSTHCrOHE r) w0 dse s

In global form EQ.(22) becomes
8 ()l = B(w) , (24)

where [gg( w )|
cross-spectral amplitude matrix;
global form of Ifj (w) matrix.

Sy (@)
is the global form of the nodal load
and Plw) is the
MONTE CARLO SIMULATION OF NODAL LOADS

In order to simulate the structural response in a

short-crested sea a set of nodal forces are simulated
with the help of N uncorrelated load series
X (t),X (t), ... ,XN(r.) , (25)
1 2
where
X
x)i' ()
Xl(t) = xi(t) (26)
Xz(t)

The number N of the load series is less or ‘equal to the
loaded nodal points on the boundary surface of the
structure. Linear filtering methods (8) can be used to
obtain the above series which satisfy

s, (w)  for i=j

S~ for i#j

Is @l = 2n
X, X.

1]
where | 18 a (3%3) unit matrix.

The nodal loads are obtained from the load series
Xi(t) as

N
= (28)
F (©) 2ha; X; () ,
or in global form N
ey = a X (29)
where a4 1s the global form of a; ; matrix,
P AP
i3 -ij 13
a,. al¥ &y a¥? s (30a)
1] 1] 1] 1}
zX _zy _zz
.. @, a..
and 1] 1 1]
Xl(t)
X, (t)
X = ; {300)
X(e) X (t)
From Eq.(29) and (27) we obtain
= _ 33T
1§ = aa"s @ . 31

For the time domain analysis assuming a narrow-
banded wave loading, there is small variation of P(w)

in the range of interesting frequencies, and from
Eq.(24) and (31) we get
aat - p s (32)

where J is the f(w) matrix evaluated for the mean wave

frequency. The matrix & can be computed from Eq.(32)
using the eigenvalue matrix A and the N eigenvectors
@ in respect to a unit matrix as

= T

i-one (33)

After the simulation of the nodal loads the solution of
the dynamic equations of motion proceeds in the usual
deterministic way.

For the frequency domain analysis the frequency

components of the force series X.{t) should be
considered l
M
3 k
Xi(t) = £ o5 cos(wkt +01i( ), (34)
k

where ¢ are amplitudes evaluated from the wave
spectra , and 01; are random phase angles between 0 and
27 . The nodal ].oadlsx are obtained using Eq.{29)
E(t) = ;1 a (-:k pgs(wkt + 6]() , (35)
where Ek and 6k are the global forms of cli( and
9“ matrices. The response to the harmonic loading of
Eﬁ.(35) is calculated for the further frequency domain
analysis (10,12).
For the frequency domain analysis the narrow-banded

assumption for the wave loading is not necessary. In
this case the hydrodynamic transfer function H(r,w)
and the matrix P(w) are frequency dependent. The

matrix & in Eq.(32) and (35) is also frequency
dependent, and Eq.{33) must be used for each frequency
Wy e

h To obtain the expected response values, a number of
sea states are simulated by choosing different sets of
the series Xj(t). The expected response values are
obtained from ensemble statistics between the simulated
response values. The number of simulations is important
in the accuracy of the final results., The optimum
number of simulations can be obtained 1looking at the
improvement in the accuracy of the resulting expected
values as the number of simulations increases.

APPLICATION I, STEEL JACKET PLATFORMS
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FIG.3 STEEL JACKET PLATFORM MODEL



Figure (3) shows a part of a model of steel jacket
offshore platform. Applying Eq.(23) for the nodal
points i and j we cbtain

6 6 ff
k. m hg
DD 4,d. (36)
Pij (w) &1 Ay, sziNj H(r) H(ry) p{Au,w)dl diy
The hydrodynamic coefficients in the hydrodynamic

transfer function H(r) are computed using Morison's
equation and Eq.(10) and (12). If the coefficients are
considered constant along each element, then Eq.(36) 1is
simlified to the following

6 6
k Tmff k .m (37)
= H . N.p(a 2,48 .
pij (w) 1(2_1 mZ] H e, Ng NJ plAu,w)at, i
The integrals in Eq.(36) and (37) can be computed

element. NX and Nj are displacement functions for the
elements k and m adjacent to nodes 1 and j and for unit
displacements at these nodes.The term, p{du,e) is the
wave coherence between the projections on the free
surface of two points of the elements k and m.

easily using a Gaus&ian integration scheme over each
i

APPLICATION II, GRAVITY PLATFORMS

A

FIG.4 GRAVITY PLATFORM MODEL

Figure (4) shows a simplified model of a gravity
platform. The legs have been subdivided into elements
with the nodal points along the axis, where A, B are
the points on the free surface. The hydrodynamic
transfer functions H(r) are computed from the wave
diffraction theory and Eq.(10) and (12). If we assume
that the wave coherence does not vary significantly
over the element size compared to the variation from
one leg to the other, then Eq.(23) takes the simplified
form

T,
- . (38)
Pij(‘")‘ O li NiH(rl)dsl_/S‘j Nj H(rz)dsj ,

or, alternately,

T
pij (w) = Bi Pap (@ Bj s (39)

where

Bi=_£. N, M) ds;

1

(39a)

and }kB(°ﬂ is the wave coherence between points A and B
of the free surface. This means that the x,y.z
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components of the nodal loads at a node are fully
correlated. In addition from Eq.{39), we can conclude
that loads on the same leg are fully correlated. Then
the simulation take a special form. Instead of the
series of Eq.(25),we use the load series Xai(t),X2(t),
ees sX (t), where N i{s the number of legs, and the
nodal loads are obtained as

B. Z a, (40)

ﬁ‘t) = i j=1,N ij

X.(v)
j

where the ay values are obtained from

a al - ¥y (41)
Eq.(41) 1is similar to Eq.(32), but reduced in size by a
considerable factor as the size of matrix y ,which is
the global form of Vpl{w), is N2, where N is the number
of legs of the platform,

APPLICATION III, LONG FLOATING STRUCTURES

FIG.5 CONTINUOUS LONG FLOATING STRUCTURE
Alnjz
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FIG.6 LONG FLOATING STRUCTURE MODEL

Figure (5) and (6) show a model of a long floating
structure, 1like a floating bridge or a floating
breakwater. The model is composed of beam elements,The

components of the wave forces are the distributed
forces p, and py; in the y and z direction and the
moment around the x axis., The hydrodynamic transfer
function 1is constant over the length of the structure,
and it i3 computed using diffraction theory and Eq.(10)
and (12) for the directional wave effects. Ref.(15)
presents graphs and tables for the hydrodynamic
coefficients in the case of long floating structures.
Using the notation of Fig.(6), Eq.(23) becomes (10,11)

T X
@ = HHE @ (42)

where

L1
pij (w)=

)

k=1,2 1=1,2

(43)
Az, .
Liijl.ZvZNik(g)le(”) V(i;ldl)dédv.

For Eq.(43) the notation of Fig.(6) is used, 1, and 1,
are the spans left and right of the node i , j; and J,
are the spans left and right of node j §{ and n are
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normal coordinates corresponding to spans adjacent to

nodes i and j ,2%iyj] is the distance from a point in
span i, to a point in span J; . N; ({) and le(ﬂ) are
displacement functions for spans iy and Jjp .

Again the special form of Eq.(39), makes the
simulation easier since the three components of the
nodal loads are correlated at each node. From the set
of uncorrelated series X, {t),Xa{t),... Xy(t), where N

is less than or equal to the loaded points, the nodal
loads are obtained as

Fl(t) = a,. Xj(t) s

i3 (44)

H, SN
and the a matrix

3 a - p ’

(45)

- *
where p* is the global form of the p;jlw) matrix.

FEquation (45) is similar to equation (32) but reduced
in size by a factor of 3, because of the correlated
components of the nodal forces.

NUMERICAL APPLICATION

An example of using the method, which has been
presented, is shown in Fig.(7a and b)s for the Hood
Canal floating bridge. The total length of the modeled
bridge is 1070 meters. The standard individual pontoons
are closed, compartmented, reinforced prestressed,
concrete units 16 meters wide, 4.5 meters deep and 120
meters long. The bridge is anchored laterally with long
pretensioned cables every 120 meters perpendicular to
the bridge axis and at an angle of 15° from the
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The wave coherence along the bridge is expressed as

Y@x/y) = exp( -8(1ax|/A) ) (46)
This agrees with in-situ measurments of wave pressure
correlation along the bridge. Ensemble average maximum

and standard deviation values for the response are

shown in the figures, and as can be seen the ensemble
average values approximate very closely the in-situ
measurments for the same storm, at the center of the

6th pontoon, for both sway and heave response.

The importance of the short-crestness of the wave
field in the response calculations can be seen from the
results of Fig.(8) for the case of a floating
breakwater. The response 1s simulated for three
different kinds of short-crested seas corresponding to
spreading functions of the cosine type with n=2,6,and
12, The results are normalized to the response values
with n=2.

CONCLUSIONS

The work presented here deals with the evaluation of
the response of structures under short-crested wave
loading. The presented method can be applied to
offshore platforms or floating bridges and breakwaters.
The differences from the ¢onventional methods are that
it i1is based on a simulation process and it introduces
the short-crested sea state directly in the response

calculations without  aasuming superposition of
directional components. The analysis proceeds as a
deterministic dynamiec analysis in time or frequency
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