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Abstract—A model of failure for brittle materials is presented, based on the weakest link hypothesis and
Weibull distribution function. Methods of computing the probability of failure of a structural component,
and numerical implementation in a finite element program, are shown. Computer subroutines are

included.

1. INTRODUCTION

In recent years, due to new developments in aerospace
engineering and energy efficient engines, the demand
for materials operating in high temperatures has in-
creased. As a result the study of ceramic materials has
been rapidly taking new dimensions.

The fundamental characteristics of ceramic or brit-
tle materials are that they show no plastic defor-
mations before failure and they have little toughness
to arrest cracks. Thus, there is a need for a different
design procedure than that of the familiar engineering
materials.

More details about the characteristics, properties,
developments, and design methods of brittle materials
can be found in Refs. [1-4].

When designing with brittle materials an important
factor is the computation of the reliability or proba-
bility of survial of a structural component under cer-
tain loading conditions. The computation of stresses
using finite element analysis is the basis for this. There-
fore a further extension of finite element programs to
include a probability of survial computation would be
useful.

In this report a model of failure, based on the
weakest link hypothesis and Weibull statistics, is
presented. The model is investigated for different
stress situations, and is implemented in a finite element
analysis. Appropriate computer subroutines, and flow
charts for implementation in existing general purpose
programs are shown.

Linear elastic material properties are assumed
through all this report.

2. WEIBULL MODEL OF FAILURE

A Weibull model of failure[5, 6}, is based on the
assumption that flaws are distributed at random with
certain density per unit volume. The failure is based on
the “weakest link hypothesis”, which states that a
component will fail when the stress intensity at any
flaw reaches a critical value for crack propagation.
Thus the structural component is represented as a
series model or a chain, with components being small
parts of the structure, in which the failure depends on
the weakest component.

For the expression of the probability of failure a
Weibull distribution[7] is used, and the probability of
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failure of a small volume dV under a normal tensile
stress ¢ is computed as:

P/(dV)=1—exp [ . <01>de] @.1)

where ¢, and m are material constants. The way they
can be estimated from experimental data is shown in
Refs. [1, 2, 4].

Sometimes, the material can withstand a threshold
stress o, without failure. Then eqn (2.1) takes the form

7= ”“)md V:I‘ @.12)
)

In this work, here, the commonly accepted assump-
tion that o, = 0 is made, and eqn (2.1) will be used.
The probability of survival of a volume dV is ex-

P(dV)=1 —exp[—(

pressed as:
o. m
P(dV)=exp I: - <—) del 2.2)
0Oy,
and the risk of rupture
O. m
Sdvy= (—) dav. (2.3)
Oy

According to the failure model, the probability of
survial of an assembly of volumes is:

P(V) =[] Ps(dV) 249

where [ | designates a product extended over the vol-

ume V.V
The risk of rupture of a volume V' is

sm:j([ Z%(%)%V)AV 2.5)

where the first integral is over a small volume AV
around a point, and ¢, is the normal tensile stress
under which a small region d¥'/AV at this point is. The
second integral is over the volume of the structural
component.
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3. RELATIONS FOR VARIOUS STRESS SITUATIONS
Before we proceed further into the numerical evalu-
ation of eqn (2.5), in conjuction with finite element
analysis, it is reasonable to look at certain stress situ-
ations, and obtain the forms of the integral over AV'in
eqn (2.5).
]

3.1 Triaxial stress

In the case of a volume 4 ¥ around a point O subjec-
ted to a triaxial stress, characterized by the three prin-
cipal stresses, 0, 7,, 6, (Fig. 1a), the normal stress on
a plane (n) is:

6, = 0, sin’ @ cos’ ® + o, sin? @ sin’ G + g, cos’ P.

3.1)

Assuming a volume dV = (r3/3) sin @ d © d @ (Fig.
1b) under this stress the risk of rupture for the volume
AV according to eqn (2.5) is:

A V 2n n
SAVy="—| do 2l sin? © cos? @
4r Jo o \%

+ 26in @ sin? @ + Z cos? m) sin © dO.
0y Gy
(.2)

In the case of equiaxial tension, 6, = 6, = g, = g eqn
(3.2) yields:

S(AV) = <3>MA V. (3.3)

)

3.2 Biaxial stress
In the case of biaxial stress, (Fig. 2) 0; =0, eqn
(3.2) becomes:

AV 2n m
S(AV)=—J (ﬁcos2¢+2sin2q>> 4o

4n |, \o, g,

x J sin @"+'de 3.4
0
and (see Appendix A)
AVmI(m) /g,
S(AV) = —cos’ @
AV =3 Ty @m + Drem L o

+ 2gin cp) do. 3.5)

Ty

Plane stress. For the plane stress situation, the stress
does not vary along the thickness, so integrating eqn
(3.5) over the thickness the risk of rupture for a small
area AA4 around a point O is

mI(m) e ®
2 J@)@m + DIm +D Jo \oo

S(AA) = Adh

+ 26 cp) 4. (3.6)

[

Plate bending. In the case of plate bending, the
stresses vary linearly along the thickness, so from eqn

Fig. 1(a).

3]
oy —-

P4
- S

Fig. 1(b).

(3.5) is obtained for the risk of rupture of an area A4

AAmT(m) a2
i dz

2J/(m)2m + HEm + 1) Jo

2n m
X <%ﬂ COSZ(D-}—%EsinZ @) do

o \ 0y h o,
— AAhmT (m)

4J(m)m + D@m + DL(m + 1)

2n m
X J <ﬂ cos’ @ +ﬂsin2 <I>> do (3.7

S(A4) =

0 \% Oy

where g, 6, are principal stresses on the tension sur-
face of the plate.

Torsion of a bar. In the case of pure torsion of a bar
(Fig. 3), a volume AV at distance r from the axis x—x
is under biaxial state of stress, o, = 1, 6, = — 1, where
7 is the shearing stress at that point. From eqn (3.5) the
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Plate
bending

Plane
stress

Fig. 2.

Fig. 3.

risk of rupture for a volume AV = A4 Axis computed
as:

S(AV) = AAAx

mI'(m) /r)’"

2/(@)(2m + DI(m + D\ a,
2r

x f (cos? ® — sin? ®)" dd (3.8)
0

and (see Appendix C)

2 m)lm/2 + ) 1)"', (3.9)
@2m + DI (m + HI(m/2)\ g,

S(AV)=A4Ax

For a circular cross section the variation of shearing
stresses is linear © = (2r/D)z,,, where t,, is the max-
imum shearing stress, and integrating eqn (3.9) over
the cross section, the risk of rupture becomes.

20 (m)(m /2 +3)
@2m + DI (m + HT(n/2)

DRIDp g \™
x 21 —-=) dr
,[) (D "'0>

e 2eT(m)T(m )2 +3) T\
T M ¥ D@m + DI(m +%)F(%)< ) '

S(Ax) = Ax

%
(3.10)
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Simple bending

Simple tension

Fig. 4.

3.3 Uniaxial stress
In the case of uniaxial stress state (Fig. 4),
g, =g, =0, eqn (3.2) reduces to:

0, 0

m (*2n
S(AV)=AV<;> ,f cos®™ dd

X j sin@+1d@ 3.11)

0
and (see Appendix A)

1 o \"

Uniaxial tension. Tensile stress is constant, equal to
¢ over the cross section, and eqn (3.12) yields:

A g \"

Simple bending of rectangular cross section. Stress
varies linearly over the cross section and eqn (3.12)

(3.12)

(3.13)
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becomes:

1 ["(20,\"
SAx)=Axr—— | (=2
(Ax) x(2m+l)L <h oo) wdz

_ wh % m
“AX_F ThHam T l)<?0) . (3.14)

3.4 General remarks

Sometimes an additional assumption is made for
the flaws around a material point, instead of random
uniform distribution. This assumption is based on the
fact, that flaws on the surface of the material can
sometimes dominate the probability of failure.

So it can be assumed that for thin plate-like speci-
mens flaws are formed only perpedicular to the plane
of the plate, and for bar-like specimens flaws are
formed only perpedicular to the axis of the bar. This
results in different values for the risk of rupture as
follows:

Biaxial stress:

AV 2n
S*(AV)=EJ (ﬁcos2¢+—2sin2d>>dq>. (3.15)

o
o \%o Oy

Uniaxial stress:

S*AV) = AV<U£>M : (3.16)

0

Comparing the above relations with eqn (3.5) and
(3.12) the following ratios for the risk of rupture are
obtained:

Biaxial stress:

_ S(AV) _WnPAV) mI(m)y/(m) 3.17)
P = Sx A1) nPRAY) @m+ DEm+ Y
Uniaxial stress:

_S@n) _mp@y) _ 1

P2 AV) W P*AV) 2m+1

The coefficients p, and p, are plotted in (Fig. 5) for
various values of the Weibull modulus m.

4. FINITE ELEMENT MODEL
In a Finite element model of the structure, with
displacement formulation, the displacements inside an
element (i, , k, . . .) (Fig. 6), are expressed as {8]:

u*(r) d)°
u(r}={ur), =IN:, NS, Ky = Ned® (4.1)
u'(r) :
where
Nf = Nf1 (4.2a)

N£: element shape functions; I: a (3 x 3) identity

matrix taking care of the three coordinate directions,
X, 9 2

d,={ g7} :nodal displacements of node i. (4.2b)

1.0

\-

0 2 4 6 8 10

Weibull modulus m

~ Fig. 5.
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Fig. 6.

The superscript e designates that the corresponding
matrices contain all the submatrices for a particular
element e.

The strains of any point of the element can be
determined from the nodal displacements as

¢ = Bd* (4.3)

where

B=LN (4.4a)
and L is a suitable linear operator[8].

The components of stress for a linear elastic ele-
ment are obtained from the strains

6 =D(e —¢) + 0y 4.5)
where D is an elastic matrix containing the appropri-
ate material properties, ¢, and @, are initial strains
and stresses correspondingly.

After a finite element solution the nodal displace-
ments are calculated and the stresses inside an ele-
ment can be expressed using the nodal displacements
as:

& = DBd‘ — D¢, + (4.6)

From the above stress tensor at a point the normal
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stress at any direction can be obtained as

6,=To (4.7
where T is a transformation matrix.

For the computation of the probability of failure
in a finite element model, eqn (2.5) takes the form:

N, 1 G m
= —{ 2 dV AV (4.8
53 kgl Vk(.[AVAV(”t’) ) “9

where N, is the number of elements.

For each element the stresses are computed at the
Gauss quadrature points, so the integral over the
volume of each element will be evaluated with a
Gauss numerical integration scheme as

s or-r e )

Element Integration
volume

The way the risk of rupture is computed for
various element of a finite element library is sum-
marized in the following Table 1.

Appendix B summarizes some numerical integra-
tion methods for the computation of the integral over
the volume AV in eqn (4.9).

Appendix C presents a computer subroutine com-
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puting the probability of failure for the elements
presented in Table 1. The same appendix shows how
this subroutine can be included in a general purpose
finite element program.

5. CONCLUSIONS

In the present work a model of failure for brittle
materials, based on the weakest link hypothesis, has
been presented. The Weibull distribution has been
used to obtain the probability of failure of a struc-
tural component.

The numerical implementation and the inclusion in
a general purpose finite element program of the above
model has been shown, with appropriate computer
subroutines and flow charts.

(4.9)

Evaluated at Gauss

weights quadrature points

Examples and results of applications of the method
to various practical situations and correlation with
experimental data can be found in Refs. [9-12].

It is evident that models like the above, for com-
puting the probability of failure of structural com-
ponents, should be included in the various finite
element programs.

Table 1.
ELEMENT STRESS SITUATION RISK OF RUPTURE COMPUTATION
Truss-Element
L
? oo B (AL (Bm
/ A G (A%)

R
(2m+1)  who,

ym

_ whi, 6 ym
2(m+1)(2m+1)  whio,

23
whiLo,

n

;,n)
- Gauss quadrature
.) points

P>0
s = P, 8M_ym1_ (P 6 ym
Meh 12M{m+1)(2m+1)  who,  whlo, wha, wh?o,
5<%
P<oO 23
s winilo, P, e mn
g )2 12M{m+13(2m+1) who,  wh?o,
3-D Beam-Element
(small shearing stresses) w
— M §M_ MM M &M
ZT -~ h c:%; b’ S T ) sz —uwhk ¢ W C P, ,,ZZgym
g wh? hu? u(om+1) i1 j=1 > 7 who, whg, hwig,
~
™ —~ L —
vy
P Gauss Stress evaluated at
Gauss quadrature points

integration
weights Tf it is negative for a

point is set equal to zero
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Table 1 (Contd).

ELEMENT STRESS SITUATION RISK OF RUPTURE COMPUTATION
Plane stress element oo
o = o cos?s + o,sin%s g-Abnlm T oWW, TR 00
causs : 8/ (omel) rimed) 51 351 13 0 1T
quadrature
6, =0 2

points

¢ )—J(a‘ P4 Zoint )" a
{ £5om5) 3, cos 3 Fosin 3 6
0

where : o, ,0, are evaluated at Sauss quadrature point Ei,n]u
Numerical evaluation of the above integral for

£,n :Normal coordinates T(Ei’“j) as in Appendix B.

A :area, h :thickness

MM
W, T(E, 4N,
121 jzi LA (El,n])

»
l>
=

o
o
A

Plane strain element
Gauss 2 in? 21
o = o_coslé + o,sin?¢ a o, o, n
quadrature 3 : . R J J L 5in? 8 cos? ¢ + ~——sin?f sin? ¢ + ——cos’e)
points T(El,nj) de (‘70 i [} 7, N
0

O, = constant
sin 8 4 8
where : 0, ,0, are evaluated at Gauss quadrature point Ei.nj,
Numerical evaluation of the above integral for
~
T(E;,n5) as in Appendix B.
Piate bending element
Abm r(m) ¥
e § e i m——— ] ] WM T(Eg,N))
Gauss 0. = M./ 16/T(m+1) (2m+3) T(med) i=1 j=1 J J
1 Ve 3
qadrature 7 n
Ll

i 2
P M, T(E,,n,) j o T s S gy
. 6, = Lyns) = cos + - sin? ¢
2 M/ S nio,

. . M, M, principal bending moments
where : M, ,M, are evaluated at Gauss quadrature point Ei’nj'
Numerical evaluation of the above integral for
h; T(Ei,nj) as in Appendix B.
Axisymmetric element A M M
5 = oycosis + opsinte S = s izl jzl"’i‘“j’“i’"j”(ci’“j)
[ oy 9, % m
T(E. yn:) = ch’[(_“ sinZocos?¢ + — sin?8sin?¢ + — cos?¢)"sinede
B 3 o o
o, = constant with 0 0 "¢ 0 °
] . >
circumferential
direction
where 0,,0,,0q are evaluated at Gauss quadrature point ({i,nj)
of the cross section '
: cross-section area Numerical evaluation of the above integral for T(&;,ns)
£,n : normal coordinates of as in Appendix B. J
the cross section
r : distance from axis
of revolution r(f5,n,) : distance from axis of revolution of Gauss quadrature
point <5i,nj).
3-D element . ! E[
s = — WoWaW, TCE. ,nL 8 )
‘? 32m is1 jE1 kS 2Ok TRITK
- 03959, e
triaxial stress
L* 2 om a Uz o m
T B (N80 Jdo[<q—:sin=ecos2¢ ¢ sintosints + g cos¢sineds
i ) [}
€ T
! uhere ©,,0,,0, are evaluated at Gauss quadrature point £y.ns,T,
v i volume of element of the cross section.
€:1,¢ ¢ normal coordinates Numerical evaluation of the above integral for T(Ei,n;,L,)
as in Appendix B.
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APPENDIX A

Some useful mathematical expressions
Reference [13] has been used as a basic source.

/2
2 J ® (sin 0= cos By~ dd = L) 4y

0 Iz +w)

where z, w > 0, I'(z): gamma function.
The following relations, used in the previous text, are
obtained from eqn (Al).

”/z(sincb)l’"+1dq>:lr(m+l)r(%)z J(@mI(m)
0 2 T(m+3/2)  @m+DI(m+y)
(A2)

=m+lw=)

" cosayndo L TOLCLED) V@I ty) )
0 T2 Tm+1) 2mI(m)
(z=%w=m+)
w/4 n/4
j (cos’ @ —sin? )" dd = J (cos 20)" d®
0 (]
I 1 I m-+1
1 JZ 1 (:7_ ( 2
== (cos@)"dO = —-——7"
0 S
2
_J@rensy

6

APPENDIX B

Numerical integration procedures for computing the risk of
rupture of an elementary material volume

The numerical evaluation of the integrals appearing in eqn
(3.5) and (3.2) is examined.
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M

2z o o m
J' (—1 cos? @ + - sin? (I)) do
o \%¢ 0o

nf2 7, g, m /2
=4 — cos? (D+—sin2(l>> d(D=4J‘ f(@)do. (Bl)
o \% Og 0

Using Gauss integration scheme we have (Fig. B1).

4 Jm F(@®)dO =7 Z W (@)
i=1

0

where n: number of Gauss quadrature points; W;: integra-
tion weights; @, = (n/4) + x{n [4); x; abscisas of the ith zero
of the orthogonal polynomials. Values of W, and x; can be
found in Ref. {13].

(I

n (5, . G | _ o -\
do | | = sin?® cos? @ + — sin? O sin? ® + —cos’®
0 0\% % Gy
/2 2
x sin® dO = 4J‘ d(I>j f(®,0)sin®de. (B2)

4 0

For the numerical integration of eqn (B2) the formulae
developed by Hammer et al.{8], for a triangular region of
integration have been modified and presented in Table B1 for
the integration on a surface of a sphere (Fig. B2).

It should be mentioned, that in the above integrations only
the positive values (only tensilve stresses) of the integrated
function contribute.
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Table Bl. Numerical integration formulae for spherical surface domain

z

/2 T/2 N
. m
[ | £Co,8)sin8deds= 5 > £(0;,8;)W;
! 2 1271771
o 0 1
PR3
POLAR COORDINATES
ORDER FIGURE PONTS IN DEGREES WEIGHTS
2 b; W
t
LINEAR . 1 45.00000 60.00000 1.00000
% ~
e
[
2
1 1 0.00000 45.00000 0.33333
QUADRATIC 2 90.00000 45.00000 0.33333
3 45.00000 90. 00000 0.33333
P 3
e
t
1 45.00000 60.00000 -0.56249
2 45.00000 36.00000 0.52083
CUBIC
— 3 27.19153 65.44120 0.52083
4 62.80847 65.44120 0.52083
e
s
1s 1 45.00000 60.00000 0.45001
4 2 0.00000 45.00000 0.13333
2 3 45.00000 90.00000 0,13333
cuBIC 4 90.00000 45.00000 0.13333
7 5 45.00000 0.00000 0.05000
3 6 0.00000 90.00000 0.05000
-6
s
7 90.00000 90.00000 0.05000
! 1 45.00000 60.00000 0.22501
2 7.57846 45.25133 0.13239
3 45.00000 84.62557 0.13239
QUINTIC 4 82.42154 45,25133 0.13239
S 76.88862 77.21905 0.12594
P 6 45.00000 18.23157 0.125%4
s
7 13.11138 77.21905 (0.125%4
APPENDIX C purpose finite element program can be done as is shown in
Computer Program the following flowchart (Fig. C1) and the computer sub-

The computation of the probability of failure in a general  routines.
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Compute risk

of rupture
s=0
' | Gauss |

A
" Initialize integrations ChY
5 L
g Compute SPHINT
g principal
Z| stresses WEIBULL TWODIM
:')’ 0y, Oy Oy Computes S(Av) Eq.(B.1)
t at a point under
- a 2-D or 3-D
a S(Av) stress situation THRDIM
2 Eq.(B.2)
(6]
-
[
>
o
e ~
§ S = $+S(Av)

S = S+S.I
P = 1-exp(-S)

Probability of failure

Fig. Cl. Flowchart for computing the probability of failure.




